A pesar del título, este blog no es sobre bailes de salón, pero si sobre algo relacionado con el movimiento y cómo llevar el paso a tu pareja de baile.

¿Alguna vez has notado como una pasarela oscila cuando pasas por ella, o cómo la grada del estadio vibra cuando saltas y animas a tu equipo favorito? Si no lo has experimentado, te recomiendo que veas estos vídeos: Millenium Bridge London, Commerzbank-Arena Frankfurt o Volga Bridge Volgograd.

¿Por qué estas estructuras oscilan si están construidas con materiales tan resistentes y rígidos como el hormigón y el acero? En general, todas las estructuras vibran bajo la acción de personas, vehículos o ráfagas de viento, pero unas estructuras lo hacen de forma más perceptible que otras.

Las estructuras desarrollan oscilaciones de mayor o menor amplitud dependiendo de sus parámetros de rigidez, masa y amortiguamiento. Como norma general, a mayor esbeltez de la estructura, más susceptible es de desarrollar oscilaciones apreciables y en algún caso molestas y peligrosas para las personas.

Experimentando con la frecuencia de resonancia (www.exploratium.edu)

La mejor forma de entender estos conceptos es experimentando. Si estás en casa, te animo a que vayas a la cocina y que cojas unos espaguetis y unas fresas. Si no tienes fresas, podrías usar pequeñas bolas hechas de plastilina. Una vez tengas estos elementos, sujeta firmemente por un extremo uno de los espaguetis y clava una fresa/bola en el otro. Ahora realiza pequeños movimientos hacia adelante y hacia atrás con tu mano.

Cambiando la frecuencia del movimiento verás como a una de estas frecuencias el espagueti desarrolla grandes oscilaciones llegando a romperse. Esta es la “frecuencia de resonancia” del conjunto espagueti-fresa y está definida por la flexibilidad o “rigidez” del espagueti y el peso o “masa” de la fresa. Si ahora pruebas a experimentar usando dos espaguetis en vez de uno y posteriormente cambias la fresa por una de mayor o menor peso verás cómo la frecuencia de resonancia cambia, siendo menor a menor rigidez y/o mayor masa tengas.

En cuanto al amortiguamiento, esta propiedad depende del tipo de material usado, y básicamente lo que hace es oponerse al movimiento, o dicho de otro modo, a mayor amortiguamiento, las amplitudes de la oscilación a la frecuencia de resonancia serán menores, y menor será el tiempo de la vibración una vez que cesa la fuente de la excitación. Esto lo podemos comprobar usando un trozo de alambre de acero en vez del espagueti. Veremos que el espagueti tiene mayor amortiguamiento que el acero pero, por el contrario, es más frágil.

Volviendo a las estructuras civiles, éstas están diseñadas y construidas con distintos materiales y geometrías que las hace tener diferentes valores de masa, rigidez y amortiguamiento, y por tanto distintas frecuencias de resonancia. ¿Qué pasaría si una pasarela peatonal tiene una frecuencia de resonancia cercana o igual a la frecuencia de paso de personas circulando sobre ella? Por lo visto en el experimento, las estructuras de la pasarela desarrollaría oscilaciones de amplitud apreciable, siendo mayores o menores dependiendo de su amortiguamiento. Si este fuera muy bajo, las oscilaciones serían tan grandes que tendrían que cerrar al tráfico la estructura para su modificación. Esto fue lo que ocurrió al tercer día de la inauguración del Millenium Bridge de Londres.

Instalación temporal de amortiguadores de masa pasivos y activos en la Pasarela del Museo de la Ciencia de Valladolid

Básicamente, hay dos soluciones para evitar que una estructura vibre de forma apreciable. La primera consiste en modificar su frecuencia de resonancia cambiando su rigidez y/o masa, y la segunda se basa en añadir amortiguamiento a la estructura. La primera solución es en general cara y modificaría de forma significativa el diseño final de la estructura haciéndola menos esbelta lo cual no suele ser del agrado del diseñador/arquitecto. La segunda solución, más económica y discreta, consistiría en añadir elementos amortiguadores en distintas partes de la estructura tal que aumenten su amortiguamiento global. Algunos ejemplos de estos elementos son amortiguadores hidráulicos similares a los de los coches o elementos viscoelásticos. Para su correcto funcionamiento, estos dispositivos necesitan estar unidos a dos puntos de la estructura con movimiento relativo.

Otro sistema que añade amortiguamiento y en el que CARTIF lleva años trabajando, son los amortiguadores de masa o TMD (Tuned Mass Damper), los cuales consisten en masas que son acopladas a las estructuras mediante muelles o cables metálicos (tipo pendular) y elementos amortiguadores de naturaleza pasiva como amortiguadores hidráulicos e imanes de neodimio, o de naturaleza activa como amortiguadores de líquidos magnetorreológicos. Este sistema tiene la ventaja de necesitar unirse a la estructura solo por un punto, siendo en general, el de mayor amplitud de oscilación.  Su principio de funcionamiento consiste en amortiguar la estructura por medio de la transferencia de energía cinética entre la estructura y el TMD. Un ejemplo de estos sistemas es el instalado recientemente en el segundo edificio masa alto del mundo, el Shanghái Tower, donde un TMD de tipo pendular de 1000 toneladas reduce drásticamente las oscilaciones del rascacielos que experimenta como consecuencia de la acción del viento.

Por tanto, aunque las estructuras vibren, mediante el uso de sistemas de amortiguación como los TMD, siempre es posible “llevarlas el paso” para que oscilen suavemente.

Carlos M. Casado
Últimas entradas de Carlos M. Casado (ver todo)
Share This